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Dynamics of neural networks relevant to properties of proteins
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We studied how the dynamics of Hopfield neural networks depend on computational and physical properties
of the network. The dynamics of the network was characterized by the distribution of first passagé&Bfes
between the states. The FPT distributions depended on the updating scheme, temperature, connectivity range,
and number of stored memories. The FTP distributions were different for synchronous and asynchronous
updating, and were more physically consistent for the synchronous than for the asynchronous updating scheme.
Neural networks and proteins share common features such as many degrees of freedom, conflicting constraints
on energy minimization, and energy functions with many local minima. Thus the general lessons learned here
on how the dynamics of neural networks depends on their physical properties may be relevant in understanding
how the dynamics of proteins is influenced by similar physical propefi&63-651X97)13307-4

PACS numbdps): 87.10+¢€, 02.70-c, 07.05.Mh

[. INTRODUCTION nections between elements, and number of memories. We
used the distribution of first passage tim@&®T's) to char-
Proteins are linear polymers of heterogenous amino acidcterize the dynamics of the network. Our use of networks
units that fold into three-dimensional conformational struc-with two stored memories was motivated by our interest in
tures. The dynamic motions of these structures play an imion channel proteins which have two distinct conformational
portant role in how proteins react with ligands and functionstates, open and closed to the flow of ions. The FTP distri-
as enzymes to catalyze biochemical reactifis Proteins ~ bution of an individual ion channel protein can be deter-
[2-5] share a number of structural and dynamical featuregnined from the open and closed time intervals measured in
with other complex systems such as spin glagédsand our patch clamp experiments.
neural network$7]. All these systems have many degrees of
freedom. They have conflicting constraints on the minimiza- 1. NEURAL NETWORK MODEL
tion of energy, so that there is a complicated energy function
with many local minima rather than one well-defined energy  The network we studied was of Hopfield tyj#), and had
minimum. Since proteins share these characteristics withl=2100 nodes. The values of the nodes w8re + 1. There
these other systems, we can use simulations of neural nenere two memories storga=2—analogous to the open and
works as a simplified way of studying some of the generaktlosed states of the ion channel protein. Each menf@ry
structural and dynamical properties that have revelance tegnsisted of the set df nodesé” which were given values
proteins. at random so that the two memories are orthogonal. The

In previous work we proposed that neural networks mayeonnection matrix) was constructed by using the Hebbian
be an efficient computational method to compute moleculag|gorithm[9]

dynamicq 3]. Before this idea can be tested in detail, we first

need to understand the dynamic properties of neural net- 1P

works better. Much is known about the energy structure of Ji=— >, &her (1)
. .Sl .. ij N <= 1S -

neural networks, and whether a given set of initial conditions pu=1

converges to a desired memory in the long term. However,

much less is known about the dynamics of how such netThe state of the network corresponding to the opBnor

works reach those memories, and how the dynamics is influelosed(2) state of the ion channel was defined by the largest

enced by the computational properties of the updatingverlap

method and the physical properties of the network. Thus this

present work is an exploration of those dynamic properties of 1 N

neural networks. The dynamic properties analyzed here are mA(t)= NE E'Si(t), 2

motivated by their relationship to issues in protein dynamics, i=1

but this present work is not intended to tie the dynamics of

neural networks to specific details of protein dynamics. where S;(t) are the values of the nodes of the network at

In this work we determined how the dynamics of neuraltimet, u=1 (open, andu=2 (closed. When the state with

networks of the Hopfield typ€8] depends on the updating the largest overlap changed from=2 or from 2—1, the

scheme, temperature dependence, degree of locality of conetwork passed through the boundary between the two states.
The first passage times were defined as the number of con-
secutive time steps spent in each state. The dynamics of the

*Permanent address: Centrum Fizyki Teoretycznej PAN, Al. Lot-network was determined by the probability that a given neu-
nikow 32/46, 02-668 Warsaw, Poland. ron assumes a new state, which is given by
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The dynamics of the model was studigdusing different 2 10% = “ﬁ% -
updating schemesii) in different temperature regimeSii ) & E e, F
with different degrees of locality of connection lengths, and 90 7 o *+++++ C
(iv) with different numbers of stored memories. In this sec- % 10 ‘; ﬁri L
tion we will report the results obtained, and discuss their — 3 . reE
relevance to protein dynamics. ] - + F
6 ] 3 o At—
A. FPT distributions for different updating schemes 10 L R LR !
) . 10 100 1000
We found that the updating scheme can have a crucia log,o (Length of First Passage Times)

affect on FPT distributions. These results have important im-

plications for the dynamics computed by neural networks FIG. 1. As the updating was varied from synchronous
and by other simulations as well, such as molecular dynami@=1.0) to asynchronousa0.01), the distribution of first pas-
ics. It raises the question as to whether some dynamicalage times varied from a single exponential, to a power law with an
properties computed by such simulations are artifacts of thexponential tail, to a power law. These simulations were performed

updating scheme used. for g=1.
There are two major ways that the values of the nodes of
the network can be update8ynchronous updatirgall the The evolution of the network in time can be represented

elements are updated in every time stéfsynchronous 55 the motion of a point in a finite region of an

updating—one randomly chosen element is updated at every_gimensional space whose coordinates are given by the val-
time step. We also devised updating schemes that are intgfing S(t) of nodes. The motion of this point in

mediate between synchronous and asynchronous Updat.'ng'lmdimensional space has a random component determined
Step. Then nodes chosen for updating were eitner chosen 5 (1S temPperature, and may have an addiional component
random from theN nodes or were a set of contiguous at each location driven by the c.on.nec.tlon strengths and the
nodes. The fraction of nodes=n/N upadated at each time values of the nodes. The FPT distribution for such a random

step was varied over the range= 1, for synchronous updat- :/valk Itn ifmt't? region gf an\_I—dllmensmnal ?pfcf IIS a pO\{\_/er
ing, to a=1/N, for asynchronous updating. aw at short times and a single exponential at longer times

The FPT distribution depended on the updating schemé.lo’l,ﬂ' The transition between these two regimes occurs at
As shown in Fig. 1, at high temperature, as the updatindhe time expected for the ranEiom walker to reach the bound-
scheme was varied from synchronows=(1) to asynchro- ary of the region. The matri¥ determines the number of
nous updating §=1/N), the FPT distribution varied con- available pathways of reaching a new configuration
tinuously from a single exponential, to a power law with ang(t+ 7) at time t+ 7 from an earlier configuratio$(t) at
exponential tail, to a power law. These results can be undefjme t.

.stood.in the following way. The configuration of the neMOrk For synchronous updating, at high temperature, the point
is defined by the set of valueg(t) of the nodes at a given enresenting the network soon reaches the boundary of the
timet. The configuration of the network at the next time stepyinjte region, and thus the FPT distribution is dominated by a

t+1 is given by single exponential component. However, for asynchronous

§(t+ 1)= I5(t)§(t). (5) updating, the !grge number _of zero ele.mentff’imean.s that
there are additional constraints in motion of the point repre-

The properties Oﬂs depend on physica' properties of the Senting the eV0|Uti0n Of the netWOI’k. It takes mUCh |0nger for

system and the updating scheme. In the case of synchronotf¥ point to reach the boundary of the configurational space,
updating, all the values of the nodes can change at each tinfd hence the FPT distribution is a power law. Those restric-
step, and thus any element Bfcan have a nonzero value. tions in the motion of the point in the configurational space

However, in the case of asynchronous updating the value dftroduce additional constraints into the dynamics that are
only one node can change at each time step, so that only tt#/€ to the updating scheme and are not physically meaning-
elements adjacent to the diagonal can be nonzero. A minful. In essence, updating isolated nodes generates local,

mum of N time steps is thus required to change the values ophysically distinct regions, and the complexity introduced by
all N nodes. such special regions leads to a power-law FPT distribution.
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FIG. 2. Synchronous updating: Distribution of first passage

times between the two memories in the neural network. High tem- F!G- 3. Asynchronous updating: Distribution of first passage
perature B=0.1), medium temperature3&0.7), and low tem- times between the two memories in the neural network computed

perature B=1.3). As the temperature decreases, the distributiorPy @synchronous updating. High temperatufe=0.1), medium
changes from a single exponential to a power law with an exponen€mperature £=0.7), and low temperatures=1.2). The distribu-

tial tail. This is consistent with the dynamics expected of a neurafion iS @ power law over most of its range at all temperatures. This
network. form may represent an artifact of the asynchronous updating.

B. FTP distributions for both updating schemes reach the edge of the configurational space, and thus the
in different temperature regimes distribution of first passage times is dominated by the power-
For a synchronous updating, as shown in Fig. 2, at highaw component.
temperaturglow B), the FPT distribution is a single expo-  The FPT distributions found from the synchronous updat-
nential. At lower temperaturénhigher 8), the FPT distribu- ing are consistent with the physical characteristics expected
tion changes to a power law with a single exponential tail.from such network$7,12]. For example, at high temperature
For asynchronous updating, as shown in Fig. 3, the distribudow B) the network freely wanders over the energy surface,
tion is a power law at both high and low temperatures, oveproducing a single exponential distribution. As the tempera-
most of its range. ture is lowered there is a spin-glass phase where the network
These results can be understood in terms of the rando@ncounters many local minima and wanders between them.
walk of the point in a finiteN-dimensional region represent- The heat energy is of the same order as the energy of the
ing the evolution of the network. As noted in Sec. Ill A, the network. This produces constraints on the walk among these
FPT distribution for such a walk is a power law at short minima which leads to the power-law component in the dis-
times and a single exponential at long times, with the transitribution of first passage times. As the temperature is low-
tion between the two regimes determined by the expectedred further the network reaches one stable configuration,
time to reach the boundary of the region. corresponding to one memory, and there is not enough heat
For synchronous updating, at high temperature, the noistor it to switch out of that memory. This behavior is also
levels are much above the energy surface of the networkzonsistent with the physical properties derived from The
The configuration of the network performs an unrestrictedr (temperature—storage-capagiphase diagrarfi7]. As the
random walk at high enough energy to reach the edge of theemperature is lowere@n the limit of a few memoriesthe
configurational space in short enough time to make the disnetwork passes from an ergodic phase where it passes
tribution of first passage times a single exponential. At lowerthrough the entire configurational space, to a spin-glass
temperature, the random walk is slower; it takes longer tgphase where it passes through many local minima, to a stable
reach the edge of the configurational space, and thus thsfate where the network converges to the minimum of a true
distribution of first passage times consists of a power lawmemory. Moreover, we also found that the single exponen-
with an exponential tail. tial rate constant at high temperature had the expected physi-
For asynchronous updating, at both high and low tem<al characteristics of an Arrhenius (/XT) temperature de-
peratures, the distribution of first passage times is the samgendence as shown in Fig. 4, wheEe is a constant.
power law. Since only one node is updated at a time, thélowever, none of those physically consistent properties of
network can only pass through a limited number of pointsthe temperature dependence were found in the results of the
adjacent in the configurational space at all temperaturesisynchronous updating. In this case the power-law form of
Thus the random walk is constrained; it takes much longer téthe FPT distribution appears to arise from the constraints
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FIG. 4. For the single exponential distributions computed by

synchronous updating, the variations of the logarithm of the rate FIG. 5. Distribution of first passage times for different radii of
constant for switching states is a linear function df,land thus has the connection lengthr& 3, 10, and 2pfor a synchronous updat-
the expected Arrhenius behavior proportionaétd’*" whenE isa  ing scheme. These simulations were performedderl.
constant.

nous updating scheme suppresses the physically meaningful
introduced by the updating scheme, rather than representirifynamics of the modeled system.
the physical properties of the network.

D. FPT distributions in the case of multiple stored memories

C. FPT distributions for local and global connectivity We also studied FPT distributions when more than two

We also tested the dependence of the FPT distributions omemories were stored, for local and gobal connectivity and
different degrees of locality of connections between the eleboth updating schemes. The characteristics of the FPT distri-
ments. The network we studied for those cases was one dputions did not change with different numbers of stored
mensional. We defined memories. This is the result expected because the tempera-

ture was sufficiently high to escape from any one memory,

(6)

riy=li—il.

The local field was then calculated according to the equatior

hi(t)=" >

12T <V max

JijS(t), (7)

wherer ., determines the radius of the maximum interaction

length. Connections were rescaled to have the same probabi

ity distributions as in Eq(3) for the same values g8.

In the case of synchronous updating, shown in Fig. 5, for
B=1 and when the connections are of a very short length,

rmax— 0, the distribution is single exponential. With an in-
creasing length of the connections,rag, increases, the dis-

tribution stays exponential over most of its range; the slope
of the distribution, however, decreases noticeably with the

increasingr . to the point it saturates. In the limit of high
temperature $—0) the FPT distributions for all values of

I max t€nd toward each other, and become a single exponer

tial. In the low-temperature limit the distributions tend to a
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power law.

On the other hand, in the case of asynchronous updating,
shown in Fig. 6, the FPT distributions at the same tempera- F|G. 6. Distribution of first passage times for different radii of
ture do not depend on different values rgf,, (8=const).  the connection lengthr& 1, 3, 10, and 2Dfor an asynchronous
This result again leads to the conclusion that the asynchraspdating scheme. These simulations were performegfofl .

log,, (Length of First Passage Times)
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and the number of memories was small enough so that thegther hand, the single exponential distributions found for po-

did not interfere with each other. tassium channels ifiyppocampal neurongl5] may arise
from low-energy barriers between the open and closed con-
IV. RELEVANCE OF THE DYNAMICAL PROPERTIES formational states.

F THE NEURAL NETWORKS TO PROTEIN
© v ORKS TO PRO S V. CONCLUSIONS

Neural networks share many properties in common with
complex biomolecules, such as many degrees of freedom,
conflicting constraints on the minimization of energy, and a

We determined how the dynamics of neural networks de-
end on different physical properties of the network. Neural
networks and proteins share common features such as many
%egrees of freedom, conflicting constraints on energy mini-

essarily mean that we can construct a neural network whos

detailed dynamics matches that of a specific protein. How/M'zation, and energy functions with many local minima.

ever, by constructing neural networks with properties corre:rhus the results found here on how the dynamics of neural

sponding to different physical properties of proteins, we carPe“’VO”‘S depends on their physical properties may be rel-

study how those properties effect the dynamics of the neur vant in unde_rs_tandmg .hOW the dy_namu_:s of proteins IS In-
network. This may be useful in understanding how thos uenced by similar physical properties. Since we are particu-

physical properties effect the dynamics of the protein. Fo tﬁ”i’ mtgrgsted |r;]|c:jn crhalnnel deOtfr']nsf:NCJCthaxe tW? stattis

example, important issues in the molecular dynamics of pro- ilil ca beope edo tcocl)'s?j ﬂ? ; ow o Io S ac ,?SS fe

teins include how the dynamics computed depends on th ¢l membrane, we studie € dynamical properties o
opfield neural networks with two stored memories.

updating scheme, the temperature, the range of the forc The effects of the updating scheme, temperature depen-

within the molecule, and the number of the stable conforma- . : '
tional shapes. We studied here how the corresponding feﬁ_ence, and degree of locality of connections were determined

tures of the updating, the temperature, the degree of localit y analyzing the first passage tirfePT) distributions of the

and the number of memories effects the dynamics of neur etwork. Low-energy barriers produced single exponential
networks TP distributions. High energy barriers produced more

Our results may be useful in interpreting some features 0Zower-law FTP distributions. The slope of the FPT distribu-

protein dynamics. For example, the open and closed tim OT depende(;i %n thgz _ranget oftthe m&eractl?hns:[. the d
distributions of ion channels measured in patch clamp ex: n unexpected and important resuft was that the dynam-

periments is the distribution of first passage times out of the®S of the network was different for synchronous and asyn-

conformational states that are open and closed to the flow thronous updatlng. The _results of th_e Synchron_ous updating
ions through the ion channel protein. Experimentally, it hagVére more consistent with the p_hyS|caI properties expected
been found that different ion channels have different dweIfor these networks such as their temperature dependence.

time distributions that range from single exponentials to his suggests that synchronpus updating in molepular—
power laws[13]. The mechanisms that produce these differ-dyn"m1ICS simulations of proteins may .be more physmally
ent types of distributions may be similar to the mechanism@e"’m.mg]cul than asynchro_nously updating the position and
that produce similar distributions in the neural network dy—veIOCIty of one atom at a time.

namics. For example, power-law distributions found for po-
tassium channels ineuroblastoma x gliomaells [14] may
correspond to high-energy barriers between open and closed This work was supported in part by NIH Grant No.
conformational states at physiological temperatures. On thEY6234.
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