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Dynamics of neural networks relevant to properties of proteins

Larry S. Liebovitch and Michał Z˙ochowski*

Center for Complex Systems, Florida Atlantic University, Boca Raton, Florida 33431
~Received 30 January 1997!

We studied how the dynamics of Hopfield neural networks depend on computational and physical properties
of the network. The dynamics of the network was characterized by the distribution of first passage times~FPT!
between the states. The FPT distributions depended on the updating scheme, temperature, connectivity range,
and number of stored memories. The FTP distributions were different for synchronous and asynchronous
updating, and were more physically consistent for the synchronous than for the asynchronous updating scheme.
Neural networks and proteins share common features such as many degrees of freedom, conflicting constraints
on energy minimization, and energy functions with many local minima. Thus the general lessons learned here
on how the dynamics of neural networks depends on their physical properties may be relevant in understanding
how the dynamics of proteins is influenced by similar physical properties.@S1063-651X~97!13307-4#

PACS number~s!: 87.10.1e, 02.70.2c, 07.05.Mh
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I. INTRODUCTION

Proteins are linear polymers of heterogenous amino a
units that fold into three-dimensional conformational stru
tures. The dynamic motions of these structures play an
portant role in how proteins react with ligands and functi
as enzymes to catalyze biochemical reactions@1#. Proteins
@2–5# share a number of structural and dynamical featu
with other complex systems such as spin glasses@6# and
neural networks@7#. All these systems have many degrees
freedom. They have conflicting constraints on the minimi
tion of energy, so that there is a complicated energy func
with many local minima rather than one well-defined ene
minimum. Since proteins share these characteristics w
these other systems, we can use simulations of neural
works as a simplified way of studying some of the gene
structural and dynamical properties that have revelanc
proteins.

In previous work we proposed that neural networks m
be an efficient computational method to compute molecu
dynamics@3#. Before this idea can be tested in detail, we fi
need to understand the dynamic properties of neural
works better. Much is known about the energy structure
neural networks, and whether a given set of initial conditio
converges to a desired memory in the long term. Howe
much less is known about the dynamics of how such n
works reach those memories, and how the dynamics is in
enced by the computational properties of the updat
method and the physical properties of the network. Thus
present work is an exploration of those dynamic propertie
neural networks. The dynamic properties analyzed here
motivated by their relationship to issues in protein dynam
but this present work is not intended to tie the dynamics
neural networks to specific details of protein dynamics.

In this work we determined how the dynamics of neu
networks of the Hopfield type@8# depends on the updatin
scheme, temperature dependence, degree of locality of

*Permanent address: Centrum Fizyki Teoretycznej PAN, Al. L
ników 32/46, 02-668 Warsaw, Poland.
561063-651X/97/56~1!/931~5!/$10.00
id
-
-

s

f
-
n
y
th
et-
l
to

y
r
t
t-
f
s
r,
t-
u-
g
is
of
re
,
f

l

n-

nections between elements, and number of memories.
used the distribution of first passage times~FPT’s! to char-
acterize the dynamics of the network. Our use of netwo
with two stored memories was motivated by our interest
ion channel proteins which have two distinct conformation
states, open and closed to the flow of ions. The FTP dis
bution of an individual ion channel protein can be det
mined from the open and closed time intervals measure
our patch clamp experiments.

II. NEURAL NETWORK MODEL

The network we studied was of Hopfield type@8#, and had
N5100 nodes. The values of the nodes wereSi561. There
were two memories storedp52—analogous to the open an
closed states of the ion channel protein. Each memoryjmW

consisted of the set ofN nodesj i
m which were given values

at random so that the two memories are orthogonal. T
connection matrixJ was constructed by using the Hebbia
algorithm @9#

Ji j5
1

N(
m51

p

j i
mj j

m . ~1!

The state of the network corresponding to the open~1! or
closed~2! state of the ion channel was defined by the larg
overlap

mm~ t !5
1

N(
i51

N

j i
mSi~ t !, ~2!

whereSi(t) are the values of the nodes of the network
time t, m51 ~open!, andm52 ~closed!. When the state with
the largest overlap changed from 1→2 or from 2→1, the
network passed through the boundary between the two st
The first passage times were defined as the number of
secutive time steps spent in each state. The dynamics o
network was determined by the probability that a given n
ron assumes a new state, which is given by
-
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Pr~Si561!5
1

11exp~22bhi !
, ~3!

where

hi~ t !5(
j51

N

Ji j Sj~ t !, ~4!

andb51/kT.

III. RESULTS

The dynamics of the model was studied~i! using different
updating schemes,~ii ! in different temperature regimes,~iii !
with different degrees of locality of connection lengths, a
~iv! with different numbers of stored memories. In this se
tion we will report the results obtained, and discuss th
relevance to protein dynamics.

A. FPT distributions for different updating schemes

We found that the updating scheme can have a cru
affect on FPT distributions. These results have important
plications for the dynamics computed by neural netwo
and by other simulations as well, such as molecular dyn
ics. It raises the question as to whether some dynam
properties computed by such simulations are artifacts of
updating scheme used.

There are two major ways that the values of the node
the network can be updated:Synchronous updating—all the
elements are updated in every time step.Asynchronous
updating—one randomly chosen element is updated at ev
time step. We also devised updating schemes that are i
mediate between synchronous and asynchronous updatin
these schemes a set ofn nodes were updated at each tim
step. Then nodes chosen for updating were either chosen
random from theN nodes or were a set ofn contiguous
nodes. The fraction of nodesa5n/N upadated at each tim
step was varied over the rangea51, for synchronous updat
ing, to a51/N, for asynchronous updating.

The FPT distribution depended on the updating sche
As shown in Fig. 1, at high temperature, as the updat
scheme was varied from synchronous (a51) to asynchro-
nous updating (a51/N), the FPT distribution varied con
tinuously from a single exponential, to a power law with
exponential tail, to a power law. These results can be un
stood in the following way. The configuration of the netwo
is defined by the set of valuesSi(t) of the nodes at a given
time t. The configuration of the network at the next time st
t11 is given by

SW ~ t11!5 P̂~ t !SW ~ t !. ~5!

The properties ofP̂ depend on physical properties of th
system and the updating scheme. In the case of synchro
updating, all the values of the nodes can change at each
step, and thus any element ofP̂ can have a nonzero value
However, in the case of asynchronous updating the valu
only one node can change at each time step, so that only
elements adjacent to the diagonal can be nonzero. A m
mum ofN time steps is thus required to change the value
all N nodes.
-
ir

al
-
s
-
al
e

of

ry
er-
. In

at

e.
g

r-

us
e

of
he
i-
f

The evolution of the network in time can be represen
as the motion of a point in a finite region of a
N-dimensional space whose coordinates are given by the
ues Si(t) of nodes. The motion of this point in
N-dimensional space has a random component determ
by the temperature, and may have an additional compon
at each location driven by the connection strengths and
values of the nodes. The FPT distribution for such a rand
walk in a finite region of anN-dimensional space is a powe
law at short times and a single exponential at longer tim
@10,11#. The transition between these two regimes occurs
the time expected for the random walker to reach the bou

ary of the region. The matrixP̂ determines the number o
available pathways of reaching a new configurati

SW (t1t) at time t1t from an earlier configurationSW (t) at
time t.

For synchronous updating, at high temperature, the p
representing the network soon reaches the boundary of
finite region, and thus the FPT distribution is dominated b
single exponential component. However, for asynchron

updating, the large number of zero elements inP̂ means that
there are additional constraints in motion of the point rep
senting the evolution of the network. It takes much longer
the point to reach the boundary of the configurational spa
and hence the FPT distribution is a power law. Those rest
tions in the motion of the point in the configurational spa
introduce additional constraints into the dynamics that
due to the updating scheme and are not physically mean
ful. In essence, updating isolated nodes generates lo
physically distinct regions, and the complexity introduced
such special regions leads to a power-law FPT distributio

FIG. 1. As the updating was varied from synchrono
(a51.0) to asynchronous (a50.01), the distribution of first pas
sage times varied from a single exponential, to a power law with
exponential tail, to a power law. These simulations were perform
for b51.
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B. FTP distributions for both updating schemes
in different temperature regimes

For a synchronous updating, as shown in Fig. 2, at h
temperature~low b), the FPT distribution is a single expo
nential. At lower temperature~higherb), the FPT distribu-
tion changes to a power law with a single exponential t
For asynchronous updating, as shown in Fig. 3, the distr
tion is a power law at both high and low temperatures, o
most of its range.

These results can be understood in terms of the ran
walk of the point in a finiteN-dimensional region represen
ing the evolution of the network. As noted in Sec. III A, th
FPT distribution for such a walk is a power law at sho
times and a single exponential at long times, with the tran
tion between the two regimes determined by the expec
time to reach the boundary of the region.

For synchronous updating, at high temperature, the n
levels are much above the energy surface of the netw
The configuration of the network performs an unrestric
random walk at high enough energy to reach the edge of
configurational space in short enough time to make the
tribution of first passage times a single exponential. At low
temperature, the random walk is slower; it takes longer
reach the edge of the configurational space, and thus
distribution of first passage times consists of a power
with an exponential tail.

For asynchronous updating, at both high and low te
peratures, the distribution of first passage times is the s
power law. Since only one node is updated at a time,
network can only pass through a limited number of poi
adjacent in the configurational space at all temperatu
Thus the random walk is constrained; it takes much longe

FIG. 2. Synchronous updating: Distribution of first passa
times between the two memories in the neural network. High te
perature (b50.1), medium temperature (b50.7), and low tem-
perature (b51.3). As the temperature decreases, the distribu
changes from a single exponential to a power law with an expon
tial tail. This is consistent with the dynamics expected of a neu
network.
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reach the edge of the configurational space, and thus
distribution of first passage times is dominated by the pow
law component.

The FPT distributions found from the synchronous upd
ing are consistent with the physical characteristics expec
from such networks@7,12#. For example, at high temperatur
~low b) the network freely wanders over the energy surfa
producing a single exponential distribution. As the tempe
ture is lowered there is a spin-glass phase where the netw
encounters many local minima and wanders between th
The heat energy is of the same order as the energy of
network. This produces constraints on the walk among th
minima which leads to the power-law component in the d
tribution of first passage times. As the temperature is lo
ered further the network reaches one stable configurat
corresponding to one memory, and there is not enough
for it to switch out of that memory. This behavior is als
consistent with the physical properties derived from theT-
a ~temperature–storage-capacity! phase diagram@7#. As the
temperature is lowered~in the limit of a few memories! the
network passes from an ergodic phase where it pa
through the entire configurational space, to a spin-gl
phase where it passes through many local minima, to a st
state where the network converges to the minimum of a t
memory. Moreover, we also found that the single expon
tial rate constant at high temperature had the expected ph
cal characteristics of an Arrhenius (e2E/kT) temperature de-
pendence as shown in Fig. 4, whereE is a constant.
However, none of those physically consistent properties
the temperature dependence were found in the results o
asynchronous updating. In this case the power-law form
the FPT distribution appears to arise from the constra

e
-

n
n-
l

FIG. 3. Asynchronous updating: Distribution of first passa
times between the two memories in the neural network compu
by asynchronous updating. High temperature (b50.1), medium
temperature (b50.7), and low temperature (b51.2). The distribu-
tion is a power law over most of its range at all temperatures. T
form may represent an artifact of the asynchronous updating.
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introduced by the updating scheme, rather than represen
the physical properties of the network.

C. FPT distributions for local and global connectivity

We also tested the dependence of the FPT distribution
different degrees of locality of connections between the e
ments. The network we studied for those cases was one
mensional. We defined

r i j5u i2 j u. ~6!

The local field was then calculated according to the equa

hi~ t !5 (
j :r i j,rmax

Ji j Sj~ t !, ~7!

wherermaxdetermines the radius of the maximum interacti
length. Connections were rescaled to have the same prob
ity distributions as in Eq.~3! for the same values ofb.

In the case of synchronous updating, shown in Fig. 5,
b51 and when the connections are of a very short leng
rmax→0, the distribution is single exponential. With an i
creasing length of the connections, asrmax increases, the dis
tribution stays exponential over most of its range; the slo
of the distribution, however, decreases noticeably with
increasingrmax to the point it saturates. In the limit of hig
temperature (b→0) the FPT distributions for all values o
rmax tend toward each other, and become a single expon
tial. In the low-temperature limit the distributions tend to
power law.

On the other hand, in the case of asynchronous upda
shown in Fig. 6, the FPT distributions at the same tempe
ture do not depend on different values ofrmax (b5const).
This result again leads to the conclusion that the async

FIG. 4. For the single exponential distributions computed
synchronous updating, the variations of the logarithm of the r
constant for switching states is a linear function of 1/T, and thus has
the expected Arrhenius behavior proportional toe2E/kT whenE is a
constant.
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nous updating scheme suppresses the physically meanin
dynamics of the modeled system.

D. FPT distributions in the case of multiple stored memories

We also studied FPT distributions when more than t
memories were stored, for local and gobal connectivity a
both updating schemes. The characteristics of the FPT di
butions did not change with different numbers of stor
memories. This is the result expected because the temp
ture was sufficiently high to escape from any one memo

y
e FIG. 5. Distribution of first passage times for different radii
the connection length (r53, 10, and 20! for a synchronous updat
ing scheme. These simulations were performed forb51.

FIG. 6. Distribution of first passage times for different radii
the connection length (r51, 3, 10, and 20! for an asynchronous
updating scheme. These simulations were performed forb51.
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and the number of memories was small enough so that
did not interfere with each other.

IV. RELEVANCE OF THE DYNAMICAL PROPERTIES
OF THE NEURAL NETWORKS TO PROTEINS

Neural networks share many properties in common w
complex biomolecules, such as many degrees of freed
conflicting constraints on the minimization of energy, and
energy function with many local minima. This does not ne
essarily mean that we can construct a neural network wh
detailed dynamics matches that of a specific protein. Ho
ever, by constructing neural networks with properties cor
sponding to different physical properties of proteins, we c
study how those properties effect the dynamics of the ne
network. This may be useful in understanding how tho
physical properties effect the dynamics of the protein. F
example, important issues in the molecular dynamics of p
teins include how the dynamics computed depends on
updating scheme, the temperature, the range of the fo
within the molecule, and the number of the stable conform
tional shapes. We studied here how the corresponding
tures of the updating, the temperature, the degree of loca
and the number of memories effects the dynamics of ne
networks.

Our results may be useful in interpreting some feature
protein dynamics. For example, the open and closed t
distributions of ion channels measured in patch clamp
periments is the distribution of first passage times out of
conformational states that are open and closed to the flow
ions through the ion channel protein. Experimentally, it h
been found that different ion channels have different dw
time distributions that range from single exponentials
power laws@13#. The mechanisms that produce these diff
ent types of distributions may be similar to the mechanis
that produce similar distributions in the neural network d
namics. For example, power-law distributions found for p
tassium channels inneuroblastoma x gliomacells @14# may
correspond to high-energy barriers between open and cl
conformational states at physiological temperatures. On
n-
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other hand, the single exponential distributions found for p
tassium channels inhyppocampal neurons@15# may arise
from low-energy barriers between the open and closed c
formational states.

V. CONCLUSIONS

We determined how the dynamics of neural networks
pend on different physical properties of the network. Neu
networks and proteins share common features such as m
degrees of freedom, conflicting constraints on energy m
mization, and energy functions with many local minim
Thus the results found here on how the dynamics of ne
networks depends on their physical properties may be
evant in understanding how the dynamics of proteins is
fluenced by similar physical properties. Since we are parti
larly interested in ion channel proteins which have two sta
that can be opened or closed to the flow of ions across
cell membrane, we studied the dynamical properties
Hopfield neural networks with two stored memories.

The effects of the updating scheme, temperature dep
dence, and degree of locality of connections were determi
by analyzing the first passage time~FPT! distributions of the
network. Low-energy barriers produced single exponen
FTP distributions. High energy barriers produced mo
power-law FTP distributions. The slope of the FPT distrib
tions depended on the range of the interactions.

An unexpected and important result was that the dyna
ics of the network was different for synchronous and as
chronous updating. The results of the synchronous upda
were more consistent with the physical properties expec
for these networks such as their temperature depende
This suggests that synchronous updating in molecu
dynamics simulations of proteins may be more physica
meaningful than asynchronously updating the position a
velocity of one atom at a time.
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